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We consider the motion of the flattened bubbles which form when air is injected into 
a viscous fluid contained in the narrow gap between two flat, parallel plates which 
make up a conventional Hele-Shaw cell, inclined a t  an angle a to  the horizontal. We 
present a number of qualitative observations on the formation and interaction of the 
streams of bubbles that appear when air is injected continuously into the cell. The 
majority of this paper is then concerned with the shape and velocity of rise of single, 
isolated bubbles over a wide range of bubble size and cell inclination. We compare 
these results to theories by Taylor & Saffman (1959), and Tanveer (1986). It appears 
that the bubble characteristics found by an ad hoc speculation in Taylor & Saffman 
(1959) and by Tanveer (1986) only agree with the experimental results in the limit 
a+O, and for large bubble widths ( D ) .  For finite values of a, i t  is necessary to use 
the measured bubble shape in order to calculate the rise velocity using the more 
general Taylor & Saffman (1959) formulation. Deviations from these theories for small 
D can be explained by considering the effects of the detailed flow close to the bubble 
surface. 

1. Introduction 
While the problem of the motion of individual spherical or oblate bubbles in an 

extended viscous fluid medium has had a very long history (see Levich 1962 ; Happel 
& Brenner 1973 for example) the corresponding motion of bubbles between the two, 
closely spaced, constraining, parallel walls of a Hele-Shaw cell, has not, as far as we 
are aware, with the only relevant papers being Taylor & Saffman (1959, hereinafter 
referred to as TS) and Tanveer (1986).t This geometry has been the centre of much 
attention recently and the present paper describes more of the fascinating array of 
phenomena which can be produced in such a simple device. Up to the present, there 
has been extensive experimentation and calculation of the linear instability and 
nonlinear growth of an  initially flat interface to  a single, large finger in the case where 
instability is produced by fluid injection into a horizontal Hele-Shaw cell, by Saffman 
& Taylor (1958), Park & Homsy (1984), Tryggvason & Aref (1983) among many, and 
by Maxworthy (1987) when the instability is driven by a gravitational potential in 
the absence of fluid injection. During the latter experiments we noted that a t  the late 
stages of the nonlinear motion of an initially flat interface large, individual bubbles 
were generated but their characteristics could not be predicted nor controlled. I n  a 
series of follow-on experiments, to study the instability of an interface under the 
combined action of both continuous fluid (air) injection and gravity, we noted, that 

7 I am indebted to the referees of the first version of this paper for pointing out these references 
to me. 



96 T. Marworthy 

at low injection rates, the structures that were formed rose under the action of gravity 
and became detached from their air supply to continue rising as individual bubbles. 
I n  this way a train or stream of bubbles could form and these had such fascinating 
interaction properties that we are devoting considerable effort to their study. A 
preliminary report of these effects is reported here with greater detail to be presented 
in a future publication. I n  order to understand the dynamics of these bubble-streams 
it was first necessary to characterize the motion of the individual bubbles, these 
studies are presented in detail here. 

Bubbles rising in such a constricted geometry are of interest in the geophysics of 
oil recovery where oil-bearing strata are deliberately cracked by secondary injection 
at  very high pressures, and in geothermal systems where one might suppose that there 
are circumstances where they have to  rise in a medium made up of a number of 
interconnected cracks filled with a more viscous fluid. One can also imagine possible 
applications in bio-engineering, e.g. in blood-oxygenation, heart-lung replacement 
machines and in other direct-contact mass and heat transfer devices in technological 
applications. 

From a dynamical point of view they are of some interest because one can study 
large Reynolds number (Re = U D / v )  flows, based on bubble width (D) velocity ( U )  
and fluid kinematic viscosity, v ,  using methods which are still basically linear. The 
latter property of Hele-Shaw flows is already well known since i t  is the parameter 
Re (h /D)2  which is important (Riegels 1938). Here h is the width of the gap between 
the plates which make up the main structure of the cell. Typically Re can be 0(103) 
before the control parameter, Re (h /D)2  approaches unity. This approach is used in 
the preliminary theoretical section, $4. I n  $2 we discuss the apparatus and experi- 
mental procedures and in $3  the preliminary observations of the interactions between 
the members of a rising stream of bubbles. The basic theories of TS and Tanveer 
(1986) together with some alternative derivations for the motion of single bubbles 
are given in $4. I n  $55 and 6 we present the experimental results and a comparison 
with the basic theory of $4 together with a discussion and extended theoretical 
arguments to explain why the basic theory applies in only a limited parameter range. 

2. Apparatus and procedure 
The basic Hele-Shaw cell is shown in figure 1 .  It consisted of two 30 x 90 cm x 

thick Lucite sheets bolted together with a &" spacer between them so that the gap 
width h was 0.180 cm, when the effect of a thin layer of sealing compound was taken 
into account. Various filling and emptying holes and air injection devices were 
attached to  the upper plate. The cell was filled with a viscous silicone oil and was 
supported in a metal frame a t  various angles a to the horizontal. Air could either 
be injected continuously through the central hole a t  the bottom of the cell (figure 1 )  
to study bubble streams or in controlled finite amounts to observe the motion of 
single bubbles. I n  the first case the interactions were recorded photographically at 
fixed intervals of time, while in the second the velocity of rise, U ,  of a given bubble 
was found by timing its passage between two marks on the upper plate while the 
bubble shape and dimension were measured from a photographic image of the bubble. 
The viscosity v and surface tension cr of the oil were found using standard methods 
so that, a t  the operating temperature of the cell (21 "C), v =  0.778cm2/s and 
cr = 21.0 dynes/cm. 
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FIGURE 1 .  Apparatus. 

3. Continuous air injection: the formation and interaction of bubble 
streamst 

When air was continuously injected into the inclined cell a t  the lower central hole 
a bubble began to  form and grow. As i t  did so, i t  rose under the action of the buoyancy 
force acting upon it,  and eventually became disconnected from its supply of air to 
continue rising as a self-contained entity. Since the air supply was constant, another 
bubble began to form in its place, to rise and to become disconnected. I n  this way 
a stream or train of bubbles of apparently equal size and spacing was formed. If the 
spacing was small enough, typically less than about 3 4  bubble diameters in our 
particular cell, alternate bubbles would catch up with their upstream neighbours to 
form a bubble pair. Under certain circumstances these bubble duos would pair again 
to form a stack of four bubbles. Further pairing created eight-bubble stacks, etc. an 
example of this process is shown in figure 2 (a).  The locations and times a t  which these 
pairings took place were not constant, apparently depending on imperceptible 
variations in the initial bubble sizes and spacings. This spatial and temporal jitter 
or chaos is very reminiscent of similar behaviour in the other nonlinear, dynamical 
fluid systems, e.g. the ‘dripping faucet ’ (Shaw 1984), vortex pairing in a plane shear 
layer, etc. and may serve as a simple alternative to, or model of such systems, a 
hypothesis we intend to explore in depth in the future. 

Fortunately, the relatively straightforward behaviour described above was only 

t This section was added a t  the suggestion of a referee of the first version of this paper. Despite 
its present lack of quantitative results, the observations do give some idea of the wide variety of 
forms which such a simple system can generate and point to further experiments in which the 
quantitative aspects of the phenomena can be examined in depth. 
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FIGURE 2. The individual bubbles, formed a t  the bottom of the cell, pair to produce bubble duos, 
initially these undergo further pairings to produce stacks of eight bubbles (first vertical strip (a)) .  
The bubble stack below the eight-bubble stack in the next sequence of strips ( b )  has six members 
only, indicating the occasional breaking of the uniformit,y of the pairing process. 

one of a bewildering variety of responses which could be generated. For example, 
under some circumstances the bubble stacks would undergo a ' tip-splitting ' in- 
stability and form two trains of bubbles rising side-by-side (figure 3 a ) .  Often the 
thin ' membranes ' separating the individual members of a stack would rupture while 
others would become unstable, to generate segmented stacks of surprising beauty 
(figures 3b-d). Often one particular pattern would repeat itself many times, to be 
suddenly replaced by a different pattern which would in turn persist for a long time 
before being replaced by either the original pattern or sometimes a new one. The 
length of time each pattern existed was variable, itself exhibiting a chaotic behaviour. 

Other interesting observations have been made, but probably none was more 
fascinating than that which occurred when a very small bubble, typically of a 
diameter of the order of the cell gap width, became attached to the nose of a much 
larger single bubble or bubble stack. The bubble velocity and ellipticity increased 
dramatically, by factors of between 2 and 10 depending on the relative sizes of the 
bubbles. We attribute this to the subtle change in the boundary conditions a t  the 
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FIGTJRE 3 ( a ) .  For caption srr p. 101 

bubble nose that  such a small bubble must induce. We sketch the details in figure 
4 ( a ) .  The observations suggest that  the curvatures of t'he interfaces which meet as 
shown in figure 4 (ai) are determined by a balance between surface-t,ension forces and 
gravity, with viscous forces playing a minor role (see footnote to §4.1), since a static 
interface (figure 4aii) has the same shape in the immediate vicinity of the inter- 
section (figure 4a,iii). Thus the initial curvature and slope of the bigger bubble bcyome 
much larger at the tip, t'han originally, and set the init'ial boundary shape from 
which the lower part of the bubble evolves to a much more slender form (figure 46). 

The theories to be presented in the next section show that,, not surprisingly, such 
slender bubbles rise faster than fat'ter ones of the same area, thus this observation 
provides an example of a flow where an apparently insignificant defect has a major 
effect. The existence of a small bubble on a very much larger bubble can also induce 
a beaut>iful symmetric wavelike instability (figure 4~). It' appears that' t'his instabilit'y 
is virtually identical wit>h that reported by C'ouder et w l .  (1986) for the c*ase of a small 
bubble attached to the tip of the long 'finger' produced by continuous air injection 
into a horizontal cell, exccpt) for the subtle and probably minor secondary effects of 
gravity. A larger tip-bubble causes an oscillation of the t'ip and an asymmetric wave 
on the larger bubble (figure 4 d ) .  

All of the qualitative observations present'ed here have made it obvious that much 
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FIGURE 3 ( U ) .  For caption see facing page. 

more work is needed to explain everything we have seen. As a first step, in the rest 
of this paper, we examine the dynamics of single bubbles in considerable detail leaving 
more complex questions of bubble interactions and instabilities to future papers. 

4. The dynamics of single bubbles 
4.1. Prelinhin.ary theoretiml considerations 

The basic characteristics of the flow around a single bubble rising in a viscous fluid 
in a narrow gap are shown in figure 5. Here we note that the flow can be conveniently 
divided into a t  least two clear-cut regions.? In  the outer region, away from the 
immediatc influence of the details of the motion near the bubble surface, the flow 
is that  due to a moving cylinder in a Hele-Shaw cell, i.e. the mean flow, although 

t Devotees of the method of matched asymptotic expansion will bp aware, immediately, of the 
possibility of the use of such kchniques here. For our present' purposes t'hey are replaced by 
intuitively simpler arguments to he augmented later. 



Bubbles in Hele-#haw cells 101 

FIGURE 3(a )  A stack of four bubbles becomes distorted at its nose and splits into two bubble streams 
rising side-by-side. This bubble splitting process also occurs in single bubbles. In  both cases if the 
splitting is not symmetric the smaller entity can become re-entrained into the rear of the larger. 
( b ) ,  (c), ( d )  and ( e )  Examples of membrane breaking and instability to  produce vertically segmented 
bubbles. 

viscous, obeys Laplace’s equation in the plane of the gap (figure 5 a ) .  As will be come 
apparent, because the bubble does not completely fill the gap between the plates 
(figure 5 b )  the outer flow is actually that due to a moving porous cylinder (see $5). 
Close to the bubble surface, gravitational G, viscous V ,  inertia I and surface-tension 
S forcest compete to determine both the detailed shape of the interface and the 
enhanced dissipation in its neighbourhood (96). 

t A dimensional analysis to  determine the relative importance of each of these forces reveals 
the known dependence on the capillary number T’/S = Ca = C7,u/u which has been used many times 
previously to  parameterize the conditions at the interface and which usually has a value of 0.2 or 
less. The Reynolds number I/ I’ = Rr, = lTh/v is usually quite small so tha t  the effects of fluid 
inertia can be, and have been, ignored. However, the ratio G/ I’ = g’h2/11U is typically quite large, 
0(102), and the ratio G/S = g’ph2/u  of order one. Thus, in general. gravity cannot be ignored in 
determining t,he shape of the interface since it causes both a n  asymmetry in the flow field, in which 
t ,  < t ,  (figure 5 ) ,  a down-slope, gravity-driven flow in the thin layers on the wall (see figure l a ) ,  
which results in a layer u p  to  10% thinner than tha t  without such a flow and a bubble shape which 
must depend to  some extent on gravity, away from the immediate vicinity of the bubble tip. In  
figure 11 ( a )  we attempt to  give some indication of the various regions where each of these forces 
may he important without entering into a full-scale asymptotic analysis. I n  what follows we have 
not attempted t.o cover the complete range of these parameters but  only that  range which seemed 
important. 
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FIGURE 4(a). For caption see facing page. 

However, for the simplest initial estimation, the velocity of rise of the bubble is 
calculated by assuming that’ local effects at the bubble edge are small and that the 
majority of the dissipation occurs in the outer flow, where t>he flow perpendicular to 
t’he plates is locally a plane Poiseuille flow while the mean streamlines, in the plane 
of t’he gap, are those of the potential flow caused by the bubble motion. 

4.3. The Taylor &* Saffma,n (1959) and Tanzwer (1986) th,eories 

Although t’he theory of bubble mot’ion in a Hele-Shaw cell by TS is readily available 
in the open literature its interpretation in the present) case is sufficiently subtle to 
warrant a relatively extensive re-examination. Although TS considered, in detail, the 
case of a bubble of width h W ern moving under the action of the pressure gradient 
generated by a uniform flow t’hrough a Hele-Shaw cell of width W cm, in the absence 
of surface-tension forces, i t  is appropriate here to consider immediately their brief 
extension to motion under the influence of gravity and a uniform upstream flow of 
velocity 1’. Here they defined a dependent) parameter 

I T -  [l+ C!‘ = ___ 
1’- [ T +  ’ 

where U is the bubble velocity and 
h2g’ sin 01 

[i+ = !5 [ i -  
4% l2VI . 

Here g’ = g(p1-p2)/pI ;  p1 and p1 are the fluid density and viscosity and pz and p2 
the bubble density and viscosity, while i r l  = pl /p l .  

I n  our particular case I’ = p2  = p2 = 0 so that 
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FIQURE 4. (a )  Details of a the large bubble shapes and flow field a t  the nose of a large bubble to 
which a smaller bubble has become attached. (i) A sketch of the shape of the interface a t  which 
two bubbles meet showing the meniscus shapes a t  various locations and the thickness of the bridge 
between the two bubbles. The double-chain dotted line represents the shape of the undisturbed 
interface. (ii) Photograph of a rising bubble pair showing details of the intersection region, together 
with a superimposed drawing (dotted-line) of the static interface shown in (iii) ( b )  Examples of 
the change in shape created by a small bubble attached to the nose of a larger one. Without the 
attached bubble the larger would have an ellipticity of about 1.4 or would be unstable. ( c )  The wave 
produced by a large rapidly moving bubble with a smaller bubble at its leading front. ( d )  The 
asymmetric wave produced on a large bubble by the oscillation of a tip-bubble slightly larger than 
that shown in (c). 
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FIGURE 5.  Flow field generated by the rise of a single bubble. (a )  Mean outer flow streamlines in 
a bubble-centred frame of reference. Dotted interior streamlines indicate the mean flow, i.e. that  
averaged across the gap width. The region of thickness O(h)  is where the flow deviates from 
Poiseuille flow. ( b )  Cross-section at A-A. In  this frame of reference the oil film between plate and 
bubble is moving with the wall velocity, U .  Far upstream the flow is uniform, also with velocity 
U,  and the recirculation bubble disappears. For lack of any better information we assume t ,  = t , .  
To avoid confusing this figure, more information is given on figure 11 (a) .  

Furthermore, the ratio of the length of the bubble ( L  cm) to its width, hW( called 
D in what follows) is given by: 

L 2 u-1 _ - _  - tanh-l {sin ($U’h)}. 
/)-ah( U‘ ) (3) 

I n  the limit A i O ,  i.e. a finite bubble in an infinitely wide cell, (LID) ,= ,  = (U- 1)  
and the bubble is elliptical in shape, while the velocity of rise of this elliptical bubble, 
which we call U,, is given by 

Specifying the area of the bubble gives one relationship between the dependent 
variables U‘ and A,  but there then exists an infinite number of possible solutions 
corresponding to  1 < U‘ < m with no mechanism to choose between them. 

TS then made the ad hoc speculation that a t  least one possible special solution could 
be found by minimizing the product U’h, for fixed bubble area, since it ‘may be 
identified intuitively with the rate a t  which fluid is pushed aside by the bubble’. This 
extremum in U ’ A  occurs for the value U‘ = 2, in which case the bubble velocity is 

and 

h2g’ sin a I T *  = 
12v, ’ 

(g) = _I_ tanh-l {sin (nil)}, 
U‘=2 ah 
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which represents just that bubble distortion required in order for the velocity to 
remain constant as the relative bubble width varies. Note that as h+O the bubble 
becomes circular in this case. 

The further, detailed interpretation of these results is left until $6 where we discuss 
the experimental results. However, as we will see there these special results (5) and 
(6) am not sufficient to reduce the data since they only appear to  be valid as a+O. 
As a result, in our more general case, we are forced to use measured values of L I D  
in order to find the corresponding values of IT‘ and hence U .  Since this calculation 
involves the inversion of the transcendental equation (3) the result is not particularly 
convenient to use. After various trial-and-error calculations we have found that 

- 2( I7’- 1 )  tanh-l {sin (+nU’h)} 

to within 1-2 o/o over the ranges of h and U’ of interest. Thus the bubble velocity is 
given to a very good approximation by 

(7)  
( L I D )  - z “7’- 11, 

(LID),,=, - U‘ tanh-l {sin (nh)} 

CT Z h2g’ sin CL ( L )  ( D )  
12v, 5 z ,’+’ 

a result which appears to account for both the gravitationally induced elongation of 
the bubble and the proximity of the cell sidewalls. 

The work of Tanveer (1986) was undertaken in an attempt to remove the 
non-uniqueness of the theory presented above by including the effect of finite, 
interfacial surface tension, cf. the work of McLean & Saffman (1981) in the 
corresponding problem of finger motion. An examination of his results makes it clear 
that he has been able to put the extremum principle of TS on a firmer footing, for 
indeed he finds that l y  --f 2 as B + 0, in the notation of the present work. For values 
of u > 0 he finds U’ < 2, the actual values depending on the details of cell width, 
bubble area and fluid properties. We have interpolated within the tables of values 
he gives and have found the corrections to (6) resulting from the inclusion of B for 
our cell geometry and fluid properties. These are plotted on figure 8 ( a )  together with 
the TS values (see (6)).  The value of U‘ found in a similar way is still 3 to within 1-2 yo, 
over our range of experimental parameters. 

However, i t  appears that he has not found unique solutions which are able to 
explain the present experimental results for large values of a, since, as suggested by 
P. Saffman (private communication), he has not used the interfacial boundary 
conditions appropriate to the present problem and hence has not been able to find 
the values of U’ > 2 which are needed in order to describe the experimental results. 

4.3. An alternative derivation for the velocity of rise of circular and elliptical bubbles 
in a wide cell 

Some of the results outlined above ((4) and ( 5 ) )  can be found using an argument which 
makes the physical meaning of the equations a little more obvious and provides a 
basis for the further calculations of $6. We consider the bubble to be disk shaped, 
filling the gap between the plates (figure 6a) .  As it  rises this bubble creates an 
unsteady flow field that has, a t  any given time, a potential flow in the mean-flow 
streamlines (@) given by 

U ,  D2 
4 r  

where 11, is the velocity of rise, D the bubble width and r and I3 cylindrical coordinates 
attached to the centre of the circle (figure 6a).  

sin 13, (9) @=-- -  
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FIGURE 6. Model geometries. (a )  Circular bubble ($4.3). ( b )  Elliptical bubble ($4.3). ( c )  Mean 
streamlines of the flow due to  a bubble which does not fill the gap between the plates of the cell, 
in a frame of reference attached to  the moving bubble ($6.1). 

From (9) we see that the local mean velocity, i.e. the absolute value of the velocity 
averaged over the depth of the gap h is given by 

At each point ( r ,  0) the local velocity profile is that  of plane Poiseuille flow so that 

( 1 1 )  

the local dissipation is 

'''1 h '(r)/unit time/unit area. 

3np1 h '' D2/unit time. 

The total dissipation is, on substituting (10) into (11) and integrating over 
$D,<r,<ocj, 

(12) 

A similar calculation for an elliptical bubble (figure 6 b )  gives the same result, i.e. 
3npl Ug D2/h .  

In  order to calculate IT, and IT, this total dissipation must be equated to the work 
done by the buoyancy force acting on the bubble 

(13) 
$cD2 hg( p1 - p 2 )  IT, sin a: for a circular bubble, 

for an elliptical bubble, and :nDL hg( p1 - p 2 )  Ue sin a 

so that 
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FIGURE 7. U / U ,  vs. D, D/h and D/ W for five values of a. The lower solid curve is the result of 
cross-plotting U / U *  us. a for constant D and extrapolating to a = 0. The solid horizontal line of 
U/U* = 1 is the theoretical prediction for circular bubbles (equations ( 5 )  and (14)). 

in the former case and 

in the latter, where g' = g(p1-p2) /p1 and a is the angle between the plane of the gap 
and the horizontal. These then agree with the TS results if we assume U' = 2, as 
obtained from their extremal hypothesis and Tanveer's numerical calculation. 

The characteristic rise velocity, U,, can then be used, initially, to reduce the raw 
data generated by the experimental procedure outlined in 92 and presented in 95. 
We do this because C7* is the only velocity scaling which uses the independent 
parameters of the problem and which does not force us to  make ad hoc assumptions 
about the nature of the flow. 

5. Results 
Experiments were run over a range of values of a and bubble widths D and the 

resultant values of the bubble velocities and shape parameter, L I D ,  (see figure 6b) 
plotted in non-dimensional coordinates in figures 7 and 8. The actual shapes are 
shown in figure 9 for a few representative examples in order to show that the bubbles 
are close to being elliptical in shape. The observations that the curvature of the rear 
of the bubble is slightly larger than the front, under some circumstances, is similar 
to the plotted shapes of Tanveer (1986). As can be seen immediately from figure 7, 
the simplest theoretical result of TS (equation ( 5 ) )  appears to be close to the lower 
limit of the experimental results for moderate bubble widths D only and for a-0, 
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FIGURE 8. ( a )  Bubble shape parameter, i.e. bubble length (L)/bubble width ( D )  us. D ,  Dlh  and D l  W 
for various values of sin a. The TS values for their unique solutions (U‘ = 2 )  are shown, as are 
Tanveer’s (1986) results for xh2u/12Wy = 3.1 x lo-*. ( b )  LID DS. s ina  for various values of D, 
with extrapolation to  the TS values at a = 0. 

but that  the actual bubbles have much higher velocities. It is clear also that the 
theory overestimates the bubble velocities for the smaller widths, having the wrong 
behaviour as D + 0 .  

As anticipated in $4, the shape parameter (figure 8) gives some clue to the reason 
€or the first of these observations since we see that for large D the bubble shape from 
TS is only approached as a-0 and that the actual bubbles are far more elongated 
in the direction of their motion, thus resulting in a larger velocity (equations (4) and 
(8)). Above the line marked ‘bubble instability’ the bubbles underwent severe, 
unsteady distortions of shape, sometimes undergoing tip-splitting and rejoining and 
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FIGURE 9. A selection of bubble planforms for values of the parameters shown on each figure. Here 
we see that while the assumption of an elliptical bubble is reasonable there are subtle differences. 
In particular, for the smaller bubbles the curvature of the leading surface is visibly greater than 
that of the trailing surface, an effect which may account for some of the small differences seen in 
figure 10. The photographic magnification is different for each bubble shape drawn here. 

sometimes a periodic undulation in shape as in the related problem of finger 
propagation in a Hele-Shaw cell (Park & Homsy 1985; Maxworthy 1987; DeGregoria 
& Schwartz 1986). Also, in this case, the similarity to the stability of bubble flows 
in fluidized beds (Davidson & Harrison 1977) has not escaped our attention and 
deserves further study. However, all of these results are excluded from the discussion 
which follows and will be presented, in detail, in a future paper. Other reasons for 
the observed deviations are somewhat more subtle and are discussed in detail in $6. 

6. Discussion 
The results presented in the previous section seem to suggest that the special 

solutions found by TS and Tanveer (1986) only hold in the limit a+O. This is a 
curious result because it appears to contradict the basic assumptions of both theories, 
since the effect of surface tension must dominate as a, and hence the bubble velocity, 
tends to zero. We hope that future experiments will clarify this result and determine 
if it  is valid under very carefully controlled conditions. 

In order to reduce these data further, it  is necessary to examine the general results 
of TS and a t  least show that they are consistent with the experimental measurements. 
In order to do so we are forced to use one of the measured characteristics, e.g. LID, 
in order to calculate the other, U (equation (8)). When we make this re-evaluation 
of the ordinate of figure 7, using (8), we find that although the results are closer to 
the theoretical value a t  moderately large values of D they are still 5-20 % too high, 
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while at small values of D no improvement can be seen at all. The reasons for this 
are two-fold. At the larger values of D we have ignored the fact that  the bubbles do 
not completely fill the gap between the plates so that the outer flow is, in reality, 
that caused by potential flow around a porous cylinder. For small values of D, major 
dcviations from a plane Poiseuille flow occur in the neighbourhood of the bubble 
surface YO that  the enhanced dissipation there must account for the lower-than- 
predicted velocities found experimentally. In  $96.1 and 6.2 we examine each of these 
effects in turn and show that when they are included in the theoretical formulation 
they appear to reduce the difference between theory and experiment to an acceptable 
level in the one case and to explain the trends in the data satisfactorily in the other. 

6.1. Velocity of rise of a wetting bubble 

As shown in figure 5 and observed in all the experiments presented here, the flow 
in the neighbourhood of the bubble surface was quite complex. I n  particular, as i t  
rose a thin film of oil was left between the plates and bubble interior. The thickness 
of this film depended on the bubble velocity but this dependence was not measured. 
The problem is similar to that presented previously by Fairbrother & Stubbs (1935), 
Bretherton (l961), Taylor (1961) and Reinelt & Saffman (1985) for bubbles moving 
through tubes and Park & Homsy (1984) and Reinelt & Saffman (1985) for a 
two-dimensional bubble. In  particular, the numerical results of Reinelt & Saffman 
(1985) show excellent agreement with the experimental results for the film thickness 
left by a bubble forced through a horizontal tube for all values of the control 
parameter U,u/r, sometimes called the capillary number Ca. Their numerical results 
for two-dimensional bubbles also asymptote the previously determined result of 
Bretherton (1961), that the total film thickness I% (i.e. the channel thickness minus 
the bubble thickness) is given by: 

(16) 
k 
- = K % 1.337(Ca)! 
h 

for Ca 5 0.02. 

For the same small values of Pa, i.e. (6 0.02) the axisymmetric case has the same 
asymptotic limit which we assume is valid in the present case also. Above Ca z 0.02 
the axisymmetric and two-dimensional cases diverge slightly with the former having 
an asymptote a t  a value of K x 0.67 and the latter a t  a value of K x 0.61. However, 
of the range of present interest, i.e. Ca < 0.1 they are virtually identical. 

I n  a frame of reference attached to the moving bubble the presence of the oil film 
results in a flow field which, in the mean, is identical to  the potential flow around a 
porous, circular cylinder (figure 6c) inside which the mean velocity is KU.t  This is, 
in fact, one of the problems first considered for study by Hele-Shaw in the cell named 
after him (Hele-Shaw & Hay 1901). This in turn results in an unsteady external flow 
given, a t  any instant, by 

(17) I+% = - U,(l - K )  - sin8 
D2 . 
4r 

cf. equation (9). 

7 Contrary to  out assumption, i t  is likely tha t  the film thickness is not uniform behind the curved 
leading surface. It has been proposed tha t  i t  depends on the local normal velocity t o  the interface 
U,, (such a result was found by Tabeling & Libchaber (1986) upon assuming tha t  the thickness 
was zero when U ,  = 0; see also comments by McLean & Saffman (1981) on Pitts (1980)) tha t  this 
cannot be completely correct can be deduced from our observation tha t  the film thickness does 
not go to zero at the maximum cross-section of the bubble, at least for the relatively large values 
of Cu used here. 
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Dlh  

As a result of the bubble rise velocity, U,, becomes 

g’h2 sina U,=-- 
1 2 ~ ,  (1-K)’ 

since the effective bubble volume, as in (13), must also be reduced by a factor of 
(1  - K ) .  This result does not agree exactly with the formulation given in the appendix 
to Saffman & Taylor (1958) from which we would derive 

g’h2 (1  - P) sin a 
[ J ,  = __ 

1217, (1-K) ’ 

since we have ignored the small amount of dissipation which occurs in the thin films. 
However, the numerical results obtained from the two equations are negligibly 
different for the range of K of interest. 

I n  the data reduction to compute the bubble velocity which follows we combine 
the effects due to ellipticity and wall effects (equation (8)) and wetting (equation (18)) 
using the measured values of ( L I D ) ,  since we known of no numerical calculations of 
this quantity except Tanveer’s (1986); and the numerical calculation of Reinelt & 
Saffman (1985) for K ,  but using the asymptotic results (equation (16)) for small values 
of Ca. The results of this re-non-dimensionalization of the experimental results are 
shown in figure 10 for values of bubble velocity below the line marked ‘bubble 
instability’ in figure 7 .  For consistency we have used the values of (L/D)u,-2 from 
TS. Using the values from Tanveer (1986) (figure 8 a )  results in values which differ 
by a t  most 3 yo from those presented here for our particular cell geometry and fluid 
properties. Also, we have plotted the abscissa in two different ways: as D/h,  since 
for small bubbles this appears to be the relevant parameter and as D / W  since this 
seems more appropriate for large bubbles. 
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FIGURE 1 1 .  (a) Details of flow at the bubble surface showing the quantities discussed in $6.2, and 
the regions of force balance discussed in $4.1. (b) Bubble geometry for very small values of bubble 
diameter. 

From figure 10 we see that the TS theory can be used to describe the experimental 
data in the range of bubble size D/ W 2 0.07 once the bubble shape is known, but 
that the downward trend a t  small values of D / h  still needs explanation. The first 
statement implies that once the shape is known the interfacial boundary conditions 
no longer matter since the drag is then determined by the dissipation in the outer 
flow around the bubble, modified by the presence of the films and the sidewalls. We 
assume that small differences between curves are due to small effects which have not 
been modelled, e.g. that the bubbles are not perfectly symmetrical (figure 9) ; that 
the wetting film may not be of uniform thickness and is not stagnant under the action 
of gravity; that the various effects cannot be combined linearly, as assumed; etc. 

6.2. The velocity of rise for small values of D / h  
For small values of D / h  we postulate that the enhanced dissipation at the bubble 
edge becomes important. Here the local pressure gradient can be estimated to be 
approximately 

i.e. we assume that the pressure difference across the bubble is developed in a distance 
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of order h and that K + 1 (figure 11 a ) .  The dissipation associated with this pressure 
gradient in the viscous flow is 

on substitution from (19) and where C is constant (equal to for Poiseuille flow) i.e. 
we assume the flow remains similar as D changes. Thus the buoyancy work must 
balance both this dissipation plus that in the outer flow (equation (12)). On calculating 
the corrected U** from this balance equation we find 

This result is plotted in figure 10 for a value of C = 0.003 which makes the 
second term in the bracket equal to 0 .036 / (D/h)  and gives good agreement with the 
experimental results for values of .Ye*/ U ,  not too different from unity. Based on this 
result it  is possible, also, that  the slight differences between the curves of figure 10 
are due to variations in K which would result in a Ap and hence C which depended 
on Ca. 

While the details of the calculation given above are open to  criticism the model 
shows, a t  least, that the details of the flow close to the bubble surface become more 
important as D / h  decreases. 

I n  the limit of very small bubble diameter the flow reduces to Stokes flow about 
a sphere close to a wall (figure 11 b )  which results in a bubble velocity approaching 
zero like D2 as D + 0  (Happel & Brenner 1973), a result which we cannot check in 
the present experiments. 
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theory presented in $3  and for the comments of the referees. Casey de Vries 
constructed the apparatus with care. I wrote the preliminary manuscript while a t  
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version by Mrs J. Givens at USC. Also, I wish to  thank Professor G. K. Batchelor 
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